Inequalities : Theory of majorization and its applications
نویسنده
چکیده
insisting that the equality sign holds when k = n. Here, x[X] > • • • > x[n] are the xt arranged in decreasing order and, similarly, y[X] > • • • > y[n]. If (1) is only required for the increasing (decreasing) convex functions on R then one speaks of weak sub-majorization x >, respectively). The first is equivalent to (2). Let & be an open convex subset of R which is symmetric, that is, invariant under each permutation of the coordinates. A function : & -> R is said to be Schur increasing (or Schur convex) if it is nondecreasing relative to the partial ordering x < y of & ; similarly for Schur decreasing functions, also called Schur concave functions. A Schur increasing function is always symmetric. An obvious example would be
منابع مشابه
Weak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملMajorization, Csiszár divergence and Zipf-Mandelbrot law
In this paper we show how the Shannon entropy is connected to the theory of majorization. They are both linked to the measure of disorder in a system. However, the theory of majorization usually gives stronger criteria than the entropic inequalities. We give some generalized results for majorization inequality using Csiszár f-divergence. This divergence, applied to some special convex functions...
متن کاملMore inequalities for Laplacian indices by way of majorization
The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...
متن کاملSome Applications of a Majorization Inequality Due to Bapat and Sunder
This paper presents applications of a remarkable majorization inequality due to Bapat and Sunder in three different areas. The first application is a proof of Hiroshima’s 2003 result which arises in quantum information theory. The second one is an extension of some eigenvalue inequalities that have been used to bound chromatic number of graphs. The third application is a simplified proof of a m...
متن کاملSchur-Convexity for a Class of Symmetric Functions and Its Applications
For x x1, x2, . . . , xn ∈ R , the symmetric function φn x, r is defined by φn x, r φn x1, x2, . . . , xn; r ∏ 1≤i1<i2 ···<ir≤n ∑r j 1 xij / 1 xij 1/r , where r 1, 2, . . . , n and i1, i2, . . . , in are positive integers. In this article, the Schur convexity, Schur multiplicative convexity and Schur harmonic convexity of φn x, r are discussed. As applications, some inequalities are established...
متن کامل